Best Known (68, 68+127, s)-Nets in Base 3
(68, 68+127, 48)-Net over F3 — Constructive and digital
Digital (68, 195, 48)-net over F3, using
- t-expansion [i] based on digital (45, 195, 48)-net over F3, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 45 and N(F) ≥ 48, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
(68, 68+127, 72)-Net over F3 — Digital
Digital (68, 195, 72)-net over F3, using
- t-expansion [i] based on digital (67, 195, 72)-net over F3, using
- net from sequence [i] based on digital (67, 71)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 67 and N(F) ≥ 72, using
- net from sequence [i] based on digital (67, 71)-sequence over F3, using
(68, 68+127, 243)-Net over F3 — Upper bound on s (digital)
There is no digital (68, 195, 244)-net over F3, because
- 1 times m-reduction [i] would yield digital (68, 194, 244)-net over F3, but
- extracting embedded orthogonal array [i] would yield linear OA(3194, 244, F3, 126) (dual of [244, 50, 127]-code), but
- residual code [i] would yield OA(368, 117, S3, 42), but
- the linear programming bound shows that M ≥ 117688 677034 371150 621267 441012 191945 699509 786586 414202 785608 822882 266942 917131 914689 407902 641112 044580 185151 160708 720843 820397 646660 433506 256247 / 388 484897 528912 368351 403561 573056 452570 889875 851861 940521 311969 565349 433313 959589 947946 383067 599375 798269 567950 > 368 [i]
- residual code [i] would yield OA(368, 117, S3, 42), but
- extracting embedded orthogonal array [i] would yield linear OA(3194, 244, F3, 126) (dual of [244, 50, 127]-code), but
(68, 68+127, 290)-Net in Base 3 — Upper bound on s
There is no (68, 195, 291)-net in base 3, because
- 18 times m-reduction [i] would yield (68, 177, 291)-net in base 3, but
- extracting embedded orthogonal array [i] would yield OA(3177, 291, S3, 109), but
- 9 times code embedding in larger space [i] would yield OA(3186, 300, S3, 109), but
- the linear programming bound shows that M ≥ 744 646766 850603 526568 601268 797422 932026 535817 992617 489413 629925 481692 835741 945421 210090 969950 381274 252816 504020 353660 158683 457200 925516 493661 440389 831805 338854 508258 811020 990136 433923 762970 235494 388055 889637 880458 633459 997426 817105 857222 614437 226587 / 10512 885684 310613 723066 595609 767913 116130 406095 478720 857818 594175 294259 025889 504412 156455 324830 169263 105843 888569 812652 562285 873819 443701 107860 316189 843301 339995 > 3186 [i]
- 9 times code embedding in larger space [i] would yield OA(3186, 300, S3, 109), but
- extracting embedded orthogonal array [i] would yield OA(3177, 291, S3, 109), but