Best Known (77, 77+141, s)-Nets in Base 3
(77, 77+141, 52)-Net over F3 — Constructive and digital
Digital (77, 218, 52)-net over F3, using
- net from sequence [i] based on digital (77, 51)-sequence over F3, using
- base reduction for sequences [i] based on digital (13, 51)-sequence over F9, using
- s-reduction based on digital (13, 63)-sequence over F9, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F9 with g(F) = 13 and N(F) ≥ 64, using
- s-reduction based on digital (13, 63)-sequence over F9, using
- base reduction for sequences [i] based on digital (13, 51)-sequence over F9, using
(77, 77+141, 84)-Net over F3 — Digital
Digital (77, 218, 84)-net over F3, using
- t-expansion [i] based on digital (71, 218, 84)-net over F3, using
- net from sequence [i] based on digital (71, 83)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 71 and N(F) ≥ 84, using
- net from sequence [i] based on digital (71, 83)-sequence over F3, using
(77, 77+141, 275)-Net over F3 — Upper bound on s (digital)
There is no digital (77, 218, 276)-net over F3, because
- extracting embedded orthogonal array [i] would yield linear OA(3218, 276, F3, 141) (dual of [276, 58, 142]-code), but
- residual code [i] would yield OA(377, 134, S3, 47), but
- the linear programming bound shows that M ≥ 31236 591023 689523 843864 258795 794381 842103 247152 915086 771555 946190 288825 670659 102469 973096 140429 956444 447581 049677 442890 308123 300312 980588 248821 322777 564200 397033 977609 400321 113204 805677 / 5026 885389 120228 713831 647528 228319 607978 045533 144673 042272 411768 160785 090938 677170 226173 137132 119010 838451 021027 675235 968212 837184 812919 739370 536960 > 377 [i]
- residual code [i] would yield OA(377, 134, S3, 47), but
(77, 77+141, 299)-Net in Base 3 — Upper bound on s
There is no (77, 218, 300)-net in base 3, because
- 32 times m-reduction [i] would yield (77, 186, 300)-net in base 3, but
- extracting embedded orthogonal array [i] would yield OA(3186, 300, S3, 109), but
- the linear programming bound shows that M ≥ 744 646766 850603 526568 601268 797422 932026 535817 992617 489413 629925 481692 835741 945421 210090 969950 381274 252816 504020 353660 158683 457200 925516 493661 440389 831805 338854 508258 811020 990136 433923 762970 235494 388055 889637 880458 633459 997426 817105 857222 614437 226587 / 10512 885684 310613 723066 595609 767913 116130 406095 478720 857818 594175 294259 025889 504412 156455 324830 169263 105843 888569 812652 562285 873819 443701 107860 316189 843301 339995 > 3186 [i]
- extracting embedded orthogonal array [i] would yield OA(3186, 300, S3, 109), but