Best Known (173−39, 173, s)-Nets in Base 3
(173−39, 173, 600)-Net over F3 — Constructive and digital
Digital (134, 173, 600)-net over F3, using
- 31 times duplication [i] based on digital (133, 172, 600)-net over F3, using
- trace code for nets [i] based on digital (4, 43, 150)-net over F81, using
- net from sequence [i] based on digital (4, 149)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 4 and N(F) ≥ 150, using
- net from sequence [i] based on digital (4, 149)-sequence over F81, using
- trace code for nets [i] based on digital (4, 43, 150)-net over F81, using
(173−39, 173, 1136)-Net over F3 — Digital
Digital (134, 173, 1136)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3173, 1136, F3, 39) (dual of [1136, 963, 40]-code), using
- 962 step Varšamov–Edel lengthening with (ri) = (14, 7, 4, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0) [i] based on linear OA(339, 40, F3, 39) (dual of [40, 1, 40]-code or 40-arc in PG(38,3)), using
- dual of repetition code with length 40 [i]
- 962 step Varšamov–Edel lengthening with (ri) = (14, 7, 4, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0) [i] based on linear OA(339, 40, F3, 39) (dual of [40, 1, 40]-code or 40-arc in PG(38,3)), using
(173−39, 173, 82659)-Net in Base 3 — Upper bound on s
There is no (134, 173, 82660)-net in base 3, because
- 1 times m-reduction [i] would yield (134, 172, 82660)-net in base 3, but
- the generalized Rao bound for nets shows that 3m ≥ 11612 729525 535370 508947 369185 462598 199085 147848 857202 607678 941658 459481 888524 069681 > 3172 [i]