Best Known (190, 190+48, s)-Nets in Base 3
(190, 190+48, 688)-Net over F3 — Constructive and digital
Digital (190, 238, 688)-net over F3, using
- 6 times m-reduction [i] based on digital (190, 244, 688)-net over F3, using
- trace code for nets [i] based on digital (7, 61, 172)-net over F81, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 7 and N(F) ≥ 172, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- trace code for nets [i] based on digital (7, 61, 172)-net over F81, using
(190, 190+48, 2424)-Net over F3 — Digital
Digital (190, 238, 2424)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3238, 2424, F3, 48) (dual of [2424, 2186, 49]-code), using
- 223 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 7 times 0, 1, 10 times 0, 1, 15 times 0, 1, 21 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 47 times 0) [i] based on linear OA(3224, 2187, F3, 48) (dual of [2187, 1963, 49]-code), using
- 1 times truncation [i] based on linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,24], and minimum distance d ≥ |{−24,−23,…,24}|+1 = 50 (BCH-bound) [i]
- 1 times truncation [i] based on linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using
- 223 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 7 times 0, 1, 10 times 0, 1, 15 times 0, 1, 21 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 47 times 0) [i] based on linear OA(3224, 2187, F3, 48) (dual of [2187, 1963, 49]-code), using
(190, 190+48, 264086)-Net in Base 3 — Upper bound on s
There is no (190, 238, 264087)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 358814 684994 593704 292981 547881 004659 848533 668248 272464 793435 230734 820751 276078 758126 546055 927236 755110 284961 502033 > 3238 [i]