Best Known (193, 193+48, s)-Nets in Base 3
(193, 193+48, 688)-Net over F3 — Constructive and digital
Digital (193, 241, 688)-net over F3, using
- 7 times m-reduction [i] based on digital (193, 248, 688)-net over F3, using
- trace code for nets [i] based on digital (7, 62, 172)-net over F81, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 7 and N(F) ≥ 172, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- trace code for nets [i] based on digital (7, 62, 172)-net over F81, using
(193, 193+48, 2592)-Net over F3 — Digital
Digital (193, 241, 2592)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3241, 2592, F3, 48) (dual of [2592, 2351, 49]-code), using
- 388 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 7 times 0, 1, 10 times 0, 1, 15 times 0, 1, 21 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 47 times 0, 1, 51 times 0, 1, 54 times 0, 1, 57 times 0) [i] based on linear OA(3224, 2187, F3, 48) (dual of [2187, 1963, 49]-code), using
- 1 times truncation [i] based on linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,24], and minimum distance d ≥ |{−24,−23,…,24}|+1 = 50 (BCH-bound) [i]
- 1 times truncation [i] based on linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using
- 388 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 7 times 0, 1, 10 times 0, 1, 15 times 0, 1, 21 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 47 times 0, 1, 51 times 0, 1, 54 times 0, 1, 57 times 0) [i] based on linear OA(3224, 2187, F3, 48) (dual of [2187, 1963, 49]-code), using
(193, 193+48, 302964)-Net in Base 3 — Upper bound on s
There is no (193, 241, 302965)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 9 688168 444761 207065 718557 606758 633675 178345 843765 977301 463438 508541 576025 837007 456447 971267 475075 538942 149564 285729 > 3241 [i]