Best Known (149−96, 149, s)-Nets in Base 3
(149−96, 149, 48)-Net over F3 — Constructive and digital
Digital (53, 149, 48)-net over F3, using
- t-expansion [i] based on digital (45, 149, 48)-net over F3, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 45 and N(F) ≥ 48, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
(149−96, 149, 64)-Net over F3 — Digital
Digital (53, 149, 64)-net over F3, using
- t-expansion [i] based on digital (49, 149, 64)-net over F3, using
- net from sequence [i] based on digital (49, 63)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 49 and N(F) ≥ 64, using
- net from sequence [i] based on digital (49, 63)-sequence over F3, using
(149−96, 149, 212)-Net over F3 — Upper bound on s (digital)
There is no digital (53, 149, 213)-net over F3, because
- extracting embedded orthogonal array [i] would yield linear OA(3149, 213, F3, 96) (dual of [213, 64, 97]-code), but
- residual code [i] would yield OA(353, 116, S3, 32), but
- the linear programming bound shows that M ≥ 30 210723 713137 067177 793975 595437 389937 655484 598142 095463 860309 406988 954987 805424 205733 738518 195687 105322 605711 836142 015912 625489 745728 349344 380080 374822 240851 452346 970066 591441 / 1 515367 982730 495420 433932 584698 701039 350523 187407 082539 706877 207417 526512 266220 467507 257976 353777 430603 205351 330224 160963 457142 806942 300281 987731 316143 > 353 [i]
- residual code [i] would yield OA(353, 116, S3, 32), but
(149−96, 149, 239)-Net in Base 3 — Upper bound on s
There is no (53, 149, 240)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 140898 984481 663308 207271 463730 998831 164346 234581 056415 665136 067766 412289 > 3149 [i]