Best Known (9, 9+72, s)-Nets in Base 32
(9, 9+72, 104)-Net over F32 — Constructive and digital
Digital (9, 81, 104)-net over F32, using
- net from sequence [i] based on digital (9, 103)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 9 and N(F) ≥ 104, using
(9, 9+72, 108)-Net over F32 — Digital
Digital (9, 81, 108)-net over F32, using
- net from sequence [i] based on digital (9, 107)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 9 and N(F) ≥ 108, using
(9, 9+72, 1100)-Net over F32 — Upper bound on s (digital)
There is no digital (9, 81, 1101)-net over F32, because
- extracting embedded orthogonal array [i] would yield linear OA(3281, 1101, F32, 72) (dual of [1101, 1020, 73]-code), but
- the Johnson bound shows that N ≤ 174408 997263 105769 011894 381257 839018 924511 481410 468414 876064 496588 646791 180076 299662 314418 406172 575952 320965 640516 896231 492297 017095 529496 407426 640599 889899 849025 513665 577325 725765 345339 406807 790251 638497 787810 024332 101607 438362 474204 572607 564493 818259 699679 623752 543927 126171 377967 438131 659368 365512 442670 165156 996808 849814 725437 303517 381633 746061 146091 281343 505427 035519 011368 687867 577226 040781 870113 360785 759282 943830 463348 251718 516740 130967 879622 527141 992330 059746 186017 236364 108096 375868 664528 607498 268460 679720 551424 080059 635776 260887 054108 451388 059553 092096 011658 714409 058456 234887 388448 678381 634676 574707 466955 525783 220412 094975 279436 279073 278062 250688 616098 640995 322200 472458 820409 273062 445051 952556 981545 212301 211656 613896 283116 420817 519824 833117 896806 952743 955755 685471 768089 040219 584959 924075 292409 050418 185635 459289 320819 979415 641352 765058 325274 010317 052522 382205 779129 054587 556603 651644 560466 195774 753704 996983 137473 754313 858134 931794 461798 176722 154700 961486 338054 090537 194501 070229 236567 884155 110434 351869 123499 419563 044451 948930 120562 717903 784273 307097 478298 042993 388343 686683 846224 739547 338252 290927 848507 011914 523897 325141 303318 013347 810775 950056 128403 224332 904459 416234 612242 768221 513577 481522 734567 105770 700813 860211 055002 390976 894678 540833 221390 077610 171191 323465 827144 264598 999495 365761 012691 454235 334572 521790 058047 663159 878836 660203 385432 802546 473161 269845 273487 498265 067779 499161 332587 576576 360204 857007 078156 479187 414291 667742 888291 197145 331527 851542 387603 784493 248481 136319 385076 325449 685238 825356 549329 897745 < 321020 [i]
(9, 9+72, 1101)-Net in Base 32 — Upper bound on s
There is no (9, 81, 1102)-net in base 32, because
- 2 times m-reduction [i] would yield (9, 79, 1102)-net in base 32, but
- the generalized Rao bound for nets shows that 32m ≥ 80714 773630 284453 729957 110611 230211 848287 485471 881277 628302 334531 254108 666134 586167 277475 348234 216991 667117 108461 316764 > 3279 [i]